

PCMD Integrated Cores Learning Lunch Series (MicroCT and Biomechanics)

Working with Rodent in vivo Dynamic Loading Systems CTPros FEA Module Update 3D-Printed Animal Holders for in vivo MicroCT Scans

Xiaoyu Xu

Wen Sang

Fen 17 2025 PCMD MicroCT Imaging Core

Penn Center for Musculoskeletal Disorders (P30-AR069619)

Outlines

- Brief introduction of our core facility
- Rodent in vivo dynamic loading systems
- CTPros update and 3D-printed holders
- Q & A

µCT Imaging Core Resources

Model	Location	Scan Size (ØxL)	Voxel Size (µm)	Applications
µCT 35	Stemmler 335A	37.9 x 120	3.5-72	High resolution <i>ex vivo</i> scans
μCT 45	Stemmler 335A	50 x 120	3.0-100	High resolution <i>ex vivo</i> scans
vivaCT 80	Stemmler 368B	80 x 145	10.4-76	High resolution <i>in vivo</i> scans
DXA	Stemmler 368C	165 x 255	100	Full body 2D scan and analysis
μCT 50	PVAMC/TMRC	50 x 120	0.5-100	Ultra high resolution (sub-micron) <i>ex vivo</i> scans
vivaCT 75	PVAMC/TMRC	79.9 x 145	21-150	<i>In vivo</i> scans for small animals; <i>Ex vivo</i> scans for large specimens
XtremeCT II	CTRC	140 x 200	60-82	Clinical scans for peripheral skeleton

Ex vivo (Specimen) Scanners

- Scanco µCT 35 (Purchased in 2012)
 - Native voxel sizes: 3.5 μm, 6 μm, 10 μm, 15 μm, 18.5 μm

Ex vivo (Specimen) Scanners

- Scanco µCT 45 (Purchased in 2019)
 - Native voxel sizes: 3 μm, 4.5 μm, 7.4 μm, 10.4 μm, 14.6 μm
 - <u>Carousel system</u> supporting 20 sample holders
 - "Air" filter for scanning low density materials
 - "Copper" filter for scanning specimen with metal implants

In vivo Scanner

- Scanco vivaCT 80 (Purchased in 2018)
 - Voxel sizes: 10.4 μm, 11.6 μm, 13 μm,
 16.1 μm, 20.8 μm, 26 μm
 - Internal heating device to keep animal warm
 - Internal camera to monitor animal's breathing
 - Ex vivo scan for specimen from <u>large</u>
 <u>animals</u> or human cadaver

MicroCT Analysis PC

- 2 PCs for MicroCT Analysis (315 Stemmler)
 - Windows 10 platform
 - Either remote or onsite access
 - <u>Scanco software</u>

Dragonfly Workstation

- Workstation for Dragonfly software (324 Stemmler)
 - Windows 10 platform
 - PMACS account required (either remote or onsite access)
 - Deep learning assisted analysis
 - Training videos <u>https://www.theobjects.com/dragonfly/tutorials.html</u>

Penn Center for Musculoskeletal Disorders

Scintica Insight DXA

- DXA system (368B Stemmler)
 - Windows 10 platform
 - In vivo / Ex vivo 2D scan and analysis
 - 25 sec per scan
 - Video tutorial: <u>https://www.youtube.com/watch?v=ZRWOm7NnK1g</u>

Outlines

- Brief introduction of our core facility
- Rodent in vivo dynamic loading systems
- CTPros update and 3D-printed holders
- Q & A

Rodent In Vivo Loading System

PCMD Micro-CT Learning Lunch

Xiaoyu Xu 02/18/2024

McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery Perelman School of Medicine University of Pennsylvania Philadelphia, PA

McKay Orthopaedic Research Laboratory

Skeletal Mechanoadaptation

 Skeleton is a dynamic tissue that can react to the forces applied to it --- 'Mechanoadaptation'

Pew Research Center

The History of Skeletal Mechanoadaptation

In early 17th Century: Surgeons and anatomists

- Bones adapt their shape and size to the loads they bear
- The <u>first published comment</u> on the mechanical function and shape of bone (Galileo Galilei,1638)

In the mid-late 19th Century:

• The relationship between <u>mechanical stress</u> and <u>internal skeletal</u> <u>structures</u> was firstly detailed described.

In late 19th Century: Wolff's Law (1892)

- As a dynamic tissue, bone adapts its structure and volume mass in response to the mechanical loads placed upon it
- 'Use it or lose it'

The History of Skeletal Mechanoadaptation

Baseball pitchers have higher bone density in throwing arm

20%

30%

Distanc

70%

80%

In late 19th Century: Wolff's Law (1892)

70%

80%

Nonthrowing Throwing

- As a dynamic tissue, bone adapts its structure and volume mass in response to the mechanical loads placed upon it
- 'Use it or lose it'

Throwing

Nonthrowing

Development of In Vivo Loading Systems

In 20th Century: to validate and expand the Wolff's Law

- Early Approaches: for fracture healing and fixation
 - Surgical methods: highly invasive, caused significant trauma, and did not allow for precise control of loading

- Breakthrough : Non-invasive models for dynamic loading
 - Ulna Axial Loading Model (1970s)
 - Four-Point Bending Model (1980s)
 - Tibial Compressive Model (1990s)

Mechanical Property of Bone

In Late 20th Century: with the non-invasive loading models

• The mechanical property of bone was systematically investigated with the *stress-strain curve*

Mechanostat – Strain Threshold

In Late 20th Century: Mechanostat hypothesis by Harold Frost

- The concept of strain thresholds, the minimum effective strain (MES), that determines how bone responds to mechanical force
- Mechanical environment (strain) ←→ Biological response (modeling & remodeling; anabolic & catabolic net bone mass)

Role of Osteocytes as Mechanosensors

In early 21st Century: Mechanosensation by Dr. Lynda Bonewald

- The interstitial fluid flow (IFF) within the lacunocanalicular system (LCS)
- <u>Sense</u> the *extracellular biophysical stimuli* (shear stress of fluid flow) \rightarrow <u>convert</u> to *internal biochemical signals* \rightarrow <u>transduce</u> *biological functions*
- Expressions of osteocyte markers, DMP1 ([↑]), E11([↑]), and SOST([↓]), in response to mechanical stimuli using the non-invasive loading model

Bone 42 (2008) 606-615

www.elsevier.com/locate/bone

Review

Osteocytes, mechanosensing and Wnt signaling

Lynda F. Bonewald *, Mark L. Johnson

University of Missouri — Kansas City School of Dentistry, Department of Oral Biology, 650 East 25th Street, Kansas City, MO 64108, USA

Received 12 November 2007; revised 20 December 2007; accepted 27 December 2007 Available online 12 January 2008

Ion channels

Development of In Vivo Loading Systems

In 21st Century: 2000s-present:

- Applications: shifted from learning mechanical property to:
 - induce the osteogenic response for bone mass preservation
 - investigate <u>osteocyte mechanotransduction</u>
- Loading devices need to be miniaturized and automated

The Axial Compressive Loading System: Most widely used today

- In vivo and non-invasive; highly reproducible; longitudinal study
- Mimics physiological dynamic loading patterns (e.g., walking or running)
- Controllable load magnitude; high-frequency loading; adjustable protocol
- Applicable on ulna, tibia, and femur in rodents, rabbit, and chicken

In vivo Axial Compression Loading System

- Loading Device: Commercial linear actuators, Load cells, softwarebased force feedback control (TA Instruments/Bose)
- Location: MicroCT Viva80 room (368B)
- Types of Loading: Primarily axial dynamic compression

In vivo Axial Compression Loading System

- Loading Device: Commercial linear actuators, Load cells, softwarebased force feedback control (TA Instruments/Bose)
- Location: MicroCT Viva80 room (368B)
- Types of Loading: Primarily axial dynamic compression
- Species and bone type: Rat and mouse; Tibia (contralateral control)
- Common experimental timeline:
 - Loading plan: 5 times a week (Mon to Fri) over 2 weeks
 - Adjustable for short-term loading study (3 or 5 days)

Mechanical Loading Parameters

Wang et al., 2025

- Under a given load, the stresses and strains may vary across bones with *different size*, geometry, or material properties due to animal's sex, age, or genotype
- **Main concern**: How to match the aim strains to the given load?

Burr et al., 1992

- Under a given load, the stresses and strains may vary across bones with different size, geometry, or material properties due to animal's sex, age, or genotype
- **Main concern**: How to match the aim strains to the given load?
- Strain matching: Load-strain calibration by the strain gauge

- Under a given load, the stresses and strains may vary across bones with *different size*, geometry, or material properties due to animal's sex, age, or genotype
- **Main concern**: How to match the aim strains to the given load?
- Strain matching: Load-strain calibration by the strain gauge

- Under a given load, the stresses and strains may vary across bones with *different size*, geometry, or material properties due to animal's sex, age, or genotype
- **Main concern**: How to match the aim strains to the given load?
- Strain matching: Load-strain calibration by the strain gauge

Mechanical Loading Parameters

- Triangle waveform: the most used waveform
- Pre-load: -1N

Wang et al., 2025

Experiment Procedure of Daily Loading

Significance of the Loading Study

- Previous purposes: understanding bone adaptation (1800s-1900s)
- Current goals (2000s-present): indispensable tools
 - Tissue level
 - Modeling/remodeling under different strain environment
 - Material properties across different treatments or conditions
 - Bone cells' mechanotransduction (mainly osteocytes)
 - Osteocyte mechanobiology: LCS structure, differentiation, signaling pathways
 - Advancing basic science: cellular and molecular mechanisms in response to mechanical force
 - Bone diseases
 - Osteoporosis and disuse osteopenia (disuse vs. loading)
 - Potential treatment or therapeutic intervention for bone diseases
 - Fracture healing and bone repair; ACL rupture for OA model
 - From bench to bed
 - Mechanical devices to enhance strength (e.g., vibration platform)

Integration with In Vivo Imaging

In vivo Micro-CT Imaging (Viva80)

- Longitudinal tracking on the bone structural adaptations
 - Minimize the animal sample numbers
 - Adjustable imaging VOIs with high resolution
- Image Registration Analysis
 - Continuously traces the consistent region of bone structure
 - Investigate the <u>local dynamic changes</u> during skeletal adaptation in response to the mechanical loading

DEXA Scanning for Bone Mineral Density

Applications in Bone Research

Combining with other technologies

- Tissue- and whole bone-levels
 - **Micro-CT**: bone mass and microstructural changes
 - Finite element analysis: strain distribution and mechanical property
- Cellular level
 - Live confocal imaging: mechanosensitivity
 - Histomorphometry: bone modeling/remodeling; bone cells' activities
 - **TEM/SEM**: osteocytes' LCS structure
- Molecular level
 - **Gene/protein analysis**: mechanotransduction (*Wnt/β-catenin signaling and SOST*)
- Animals: surgery/sex/age/genotype
 - OVX/ORX, iPTH, etc.
 - Physiological conditions, e.g., aging, pregnancy, or lactation
 - Transgenic animals with different ages

Training & Scheduling

- Two sessions of training are required (in-person):
 - 1) Basic introductions of the function of the instrument and safety operation; 2) Hands-on training
 - Consultation and customization of the loading protocol
 - Please contact via email: xiaoyu.xu@pennmedicine.upenn.edu
- Scheduling your experiment window via Google Calendar
 - Need to book your time on TWO calendars: Viva80 + Iso machine On <u>Viva80 room</u> calendar: Book the loading instrument XSL-Xiaoyu-Tel#-(Loading use)

On **Iso machine** calendar: Book the Iso machine40

XSL-Xiaoyu-Tel#-(Iso80)

Thank you for listening! Any questions?

Outlines

- Brief introduction of our core facility
- Rodent in vivo dynamic loading systems
- CTPros update and 3D-printed holders
- Q & A

• FEA Module

- Convert VOI to Abaqus input file
- Calculate VOI stiffness using Homogenization Theory

• FEA Module

- Convert VOI to Abaque input file \checkmark
- Calculate VOI stiffness using Homogenization Theory

• FEA Module

- Convert VOI to Abaqus input file
- Calculate VOI stiffness using Homogenization Theory

- In vivo mouse scan
 - 10.4 μ m isotropic voxel size (32 mm FOV)
 - 2.18 mm bone segment of femur midshaft

• In vivo rat scan

- 11.6 µm isotropic voxel size (36 mm FOV)
- 2 mm bone segment of femur midshaft

- Ex vivo small samples
 - For 2.5 mm, 2.8 mm tibiae/femurs
 - Compatible with 15 mL lab tubes (7.4 μ m resolution)

- Ex vivo small samples
 - For 2.5 mm, 2.8 mm tibiae/femurs
 - Compatible with 15 mL lab tubes (7.4 μ m resolution)

https://www.med.upenn.edu/pcmd/resources?preview=tr ue

Resource Download

https://www.med.upenn.edu/pcmd/resources?preview=true

Received of Medicine University of Pennsylvania	Penn Center for Musculoskeletal Disorders			
Home - About Us	A Research Cores > MicroCT Imaging > Resources			
Research Cores 📤	Resources			
Biomechanics 💌				
Histology 💌	Tools for image processing (registration, crop, rescale, format conversion, visualization)			
MicroCT Imaging 📤	Please add firewall exceptions for the exe files.			
Overview				
Getting Started	DICOM downscale tool: Download			
Facilities	Dicom Downscale Tool - 🗆 X			
Rates	DICOM Directory Please select a DICOM folder			
File Request				
User Policy	Scale Factor			
User Tutorials	Current Resolution New Resolution			
Publications	Start Downscaling			
Software	Copyright @ PCMD MicroCT Imaging Core 2024			
Data Access				
Resources	CTPros: Download			
Membership 💌	Computer Tomography Processing & Registration - Open-Sourced X File Classify Filter Geneic Numeric Register Transform Protocols Help Concal Transfer Geneic Numeric Register Transform Transfer Prinsip Security			
Annual Scientific	None *1919(2001)380,4841 *			
Symposium 💌	X Y Z 409 (60) (6) (6) (40) 2			
Visiting Professorship				

